您好,欢迎访问维基体育·(中国)官方网站!
400-123-4511
138111155554
行业资讯
.

新闻动态

联系我们

维基体育·(中国)官方网站

地址:广东省广州市维基体育·(中国)官方网站
手机:138111155554

咨询热线400-123-4511

维基体育官方网站哪些是工业废水常用处理方法?

发布时间:2023-11-02 14:24:08人气:

  维基体育官方网站哪些是工业废水常用处理方法?随着人们生活水平的提高,污水无所不在,尤其是工业污水,对人类健康的危害也日益普遍和严重。下面跟着绿缘环境看看工业废水常用处理方法有哪些?

  凝集法利用金属氢氧化物或有机金属聚合物的吸附或离子桥作用进行脱色,此法对于粒径在10- 9 nm~10- 8 nm范围内的粒子最为有效。这种方法的原理是,加入带电荷或者极性官能团的凝聚剂,消除原系统粒子间的静电斥力的作用,促使其凝集沉降,从而达到分离脱色的目的。

  吸附法是利用多孔性固体物质做吸附剂,以其表面吸附污水中高色度物质的方法。常用的吸附剂有活性炭、硅藻土、焦粉以及大孔吸附树脂等。

  活性炭具有疏松多孔、堆积密度低、比表面积等特点能够高效的吸附水溶性的色素和染料,但不能够吸附悬浮固体和不溶性的染料。并且,活性炭的再生费用昂贵,一般用于少量、浓度较低的污水处理。锅炉煤渣、钢渣、焦粉和农产品废弃物如甘蔗渣、花生壳等)具有一定的吸附能力,可以替代活性炭。

  电化学法处理污水一般无需加入化学药品,后处理简单,占地面积小,管理方便,被称为清洁处理法。随着电力工业的发展,电化学法正逐步成为一种应用广泛的水处理技术。

  氧化还原法主要是采用臭氧、过氧化物、连二硫酸盐、次氯酸盐等氧化还原剂处理高色度污水,使有机分子中的双键发生断裂而达到脱色目的。

  厌氧生物处理法是利用兼性厌氧菌和专性厌氧菌将污水中大分子有机物降解为低分子化合物,进而转化为甲烷、二氧化碳的有机污水处理方法。

  活性污泥法是利用含有大量微生物的活性污泥,对污水中的有机物或无机污染物进行吸收和氧化分解,从而使污水得以净化的方法。

  含氰废水是一种毒性较大的工业废水,在水中不稳定,较易于分解,无机氰和有机氰化物皆为剧毒性物质,人食入可引起急性中毒。氰化物对人体致死量为0.18,为0.12g,水体中氰化物对鱼致死的质量浓度为0.04~0.1mg/L。

  含氰量高的废水,应采用回收利用,含氰量低的废水应净化处理方可排放。回收方法有酸化曝气—碱液吸收法、蒸汽解吸法等。

  治理方法有碱性氯化法、电解氧化法、加压水解法、生物化学法、生物铁法、硫酸亚铁法、空气吹脱法等。其中碱性氯化法应用较广,硫酸亚铁法处理不彻底亦不稳定,空气吹脱法既污染大气,出水又达不到排放标准。较少采用。

  焦化厂、煤气厂、石油化工厂、绝缘材料厂等工业部门以及石油裂解制乙烯、合成苯酚、聚酰胺纤维、合成染料、有机农药和酚醛树脂生产过程。含酚废水中主要含有酚基化合物,酚基化合物是一种原生质毒物,可使蛋白质凝固。

  有色金属冶炼厂、化工厂、农药厂、造纸厂、染料厂及热工仪器仪表厂等。各种汞化合物的毒性差别很大,如甲基汞,甲基汞进入人体很容易被吸收,不易降解,排泄很慢,容易在脑中积累。

  活性污泥法是一种污水的好氧生物处理法,目前是处理城市污水最广泛使用的方法。它能从污水中去除溶解性的和胶体状态的可生化有机物以及能被活性污泥吸附的悬浮固体和其他一些物质,同时也能去除一部分磷素和氮素。

  生物接触氧化法是主要利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物接触氧化法是一种浸没生物膜法,是生物滤池和曝气池的综合体,兼有活性污泥法和生物膜法的特点,在水处理过程中有很好的效果。

  SBR是序批式活性污泥法,是一种间歇运行的废水处理工艺,近年来在国内外被引起广泛重视和研究的一种污水处理技术。SBR的工作程序是由流入、反应、沉淀、排放和闲置五个程序组成。污水在反应器中按序列、间歇地进入每个反应工序,每个SBR反应器的运行操作在时间上也是按次序排列间歇运行的。而对出水水质有特殊要求,如脱氮除磷等还需要对工艺进行适当改进。

  MBR是一种将高效膜分离技术与传统活性污泥法相结合的新型高效污水处理工艺,它用具有独特结构的MBR平片膜组件置于曝气池中,经过好氧曝气和生物处理后的水,由泵通过滤膜过滤后抽出。MBR工艺设备紧凑,占地少;出水水质优质稳定,有机物去除效率高;剩余污泥产量少,降低了生产成本;可去除氨氮及难降解有机物;易于从传统工艺进行改造。但是,膜造价高,使膜生物反应器的基建投资高于传统污水处理工艺;膜污染容易出现,给操作管理带来不便;能耗高,工艺要求高。

  在工业含盐废水的处理过程中,工业含盐废水进入低温多效浓缩结晶装置,经过3—6效蒸发冷凝的浓缩结晶过程,分离为淡化水(淡化水可能含有微量低沸点有机物)和浓缩晶浆废液;无机盐和部分有机物可结晶分离出来,焚烧处理为无机盐废渣;不能结晶的有机物浓缩废液可采用滚筒蒸发器,形成固态废渣,焚烧处理;淡化水可返回生产系统替代软化水加以利用。

  低温多效蒸发浓缩结晶系统不仅可以应用于化工生产的浓缩过程和结晶过程,还可以应用于工业含盐废水的蒸发浓缩结晶处理过程中。多效蒸发流程只在第一效使用了蒸汽,故节约了蒸汽的需要量,有效地利用了二次蒸汽中的热量,降低了生产成本,提高了经济效益。

  离子交换是一个单元操作过程,在这个过程中,通常涉及到溶液中的离子与不溶性聚合物(含有固定阴离子或阳离子)上的反离子之间的交换反应。采用离子交换法时,废水首先经过阳离子交换柱,其中带正电荷的离子(Na+等)被H+置换而滞留在交换柱内;之后,带负电荷的离子(CI-等)在阴离子交换柱中被OH-置换,以达到除盐的目的。

  膜分离技术是利用膜对混合物中各组分选择透过性能的差异来分离、提纯和浓缩目标物质的新型分离技术。目前常用的膜技术有超滤、微滤、电渗析及反渗透。其中的超滤、微滤用于工业废水的处理时,不能有效去除污水中的盐分,但可以有效截留悬浮固体(SS)及胶体COD;电渗析和反相渗透(RO)技术是最有效和最常用的脱盐技术。限制膜技术工程应用推广的主要难点是膜的造价高、寿命短、易受污染和结垢堵塞等。

  典型的Fenton试剂是由Fe2+催化H2O2分解产生˙OH,从而引发有机物的氧化降解反应。由于Fenton法处理废水所需时间长,使用的试剂量多,而且过量的Fe2+将增大处理后废水中的COD并产生二次污染。Fenton法反应条件温和,设备较为简单,适用范围广;既可作为单独处理技术应用,也可与其他方法联用。

  臭氧是一种强氧化剂,与还原态污染物反应时速度快,使用方便,不产生二次污染,可用于污水的消毒、除色、除臭、去除有机物和降低COD等。单独使用臭氧氧化法造价高、处理成本昂贵,且其氧化反应具有选择性,对某些卤代烃及农药等氧化效果比较差。

  微电解技术是目前解决高浓度、难降解无机净化的一种理想工艺。该工艺岂但能大幅度升高COD和色度,还可大大提高废水的可生化性。该技术是在无需外接电源的状况下,应用微电解填料本身发生“原电池”效应答废水停止解决。具备氧化--复原的作用,能与废水中的许多组散产生氧化复原反,毁坏有色废水中的有色物质的发色基团或助色基团,甚至断链,到达脱色的作用,提高了废水的可生化性。

  它们的水合物具备较强的吸附-絮凝作用、Fe3+在碱的作用下进一步发生氢氧化亚铁和氢氧化铁胶体絮凝剂。它们的吸附才能远远高于那些外加化学药剂水解失去的絮凝剂;扩散在水污中的悬浮物、有毒物、金属离子及无机大分子能被吸附-絮凝积淀。其任务原理:电化学、氧化—复原、物理吸附及絮凝--积淀的独特作用对废水停止解决。该法具备实用范畴广、解决效果好、解决工夫短、操作维护不便、电力耗费高等优点,可广泛利用于工业废水的预解决和深度解决中。

  微电解技术可去除废水中高浓度无机物、进步可生化性,同时还可防止运转进程中的填料钝化、板结等景象。可宽泛利用于垃圾渗滤液、石油焦化、印染、电镀、造纸、医药、无机硅、线路板、硝基苯、苯胺、畜牧、双氧水化工、橡胶助剂化工以及含苯环化工等废水解决当中。

  臭氧氧化技术具有很强的氧化能力,目前是已知最强的氧化剂之一。臭氧是废水处理中使用较广泛的氧化剂,其原理是臭氧的强氧化性。臭氧分解后,会分解成氧气而不会造成二次污染。无论是饮用水还是废水,臭氧都会与简单或复杂的有机物发生反应,从而产生某些相同的产品:乙醛,羧酸,脂族,芳族化合物和其他氧化物。这些产品易于生物降解,无明显毒性。

  所以,近些年发展了旨在提升臭氧氧化工作效率的相关组合技术,当中UV/O3、H2O2/O3、UV/H2O2/O3等组合方式不但可提升氧化速率和工作效率,并且能氧化臭氧单独作用时难以氧化降解的有机化合物。臭氧催化技术服务于臭氧高级氧化工艺,它将臭氧的强氧化性和催化剂的吸附、催化特性结合起来,更有效地解决臭氧利用率低、臭氧处理效率低、运行费用高、有机物降解不彻底等问题、研制开发高效低耗能的臭氧发生装置成为科研的重要方向。

  电化学(催化)氧化技术是阳极氧化反应可以直接进行化学降解有机物,发生OH.自由基,长链及环状杂原子无机物失去电子,使官能团断链降解,COD降低,废水的可生化性(B/C值)提高,同时有机物双键或其他共轭键断开后,发色基团减少,降低了废水色度。或利用阳极反应生成羟基自由基(˙OH)、臭氧等氧化剂降解有机物。

  电催化氧化技术是目前处理难降解、难生化有机废水的一种理想工艺,多孔电极使其效率加倍提高,从而节约了电功,其工作原理基于电化学氧化—还原反应以及絮凝沉淀的共同作用,该法具有适用范围广、处理效果好、成本低、操作维护方便,不需消耗电力资源等优点。该工艺用于难降解高难度废水的处理,不仅能大幅度地降低COD,而且可大大提高废水的可生化性。

  电化学(催化)氧化包含二维和三维电极体系。因为三维电极体系的微电场电解法的作用,现阶段深受青睐。三维电极是在传统式的二维电解槽的电极间填装颗粒状或其他的碎渣状工作电极材料,并使填装的原材料外表带电体,变成第三极,且在工作电极材料外表产生电化学反应。

  与二维平板电极相比较,三维电极有着极大的比表面积,能提高电解槽的面体比,能够较低电流密度供应相对较大的电流强度,粒子间隔距离小而物质传质的速度高,时空转变效率高,故此电流效率高、解决效果非常好。三维电极可用来解决生活废水,农药、染料、制药、含酚污水等难化学降解有机废水,金属离子,垃圾渗滤液等。

  光化学催化氧化技术是在光化学氧化的基础上发展的,与光化学法比起来,有更强的氧化能力,可使有机污染物质更充分地可降解。光化学催化氧化是在有催化剂的前提条件下的光化学降解,氧化剂在光的辐射源下产生氧化能力比较强的自由基。

  催化剂有TiO2、ZnO、WO3、CdS、ZnS、SnO2和Fe3O4等。可分为均相和非均相这两种形式,可以通过光助-Fenton反应产生羟基自由基使污染物质得以可降解,提高解决效率,同时发生的污泥量更少;非均相催化降解是在环境污染体系中投进定量的光敏半导体材料,如TiO2、ZnO等,并且相结合光辐射,使光敏半导体在光的照射下激起产生电子—空穴对,吸附在半导体上的溶解氧、水分子等与电子—空穴的作用,产生-OH等氧化能力比较强的自由基。TiO2光催化氧化技术在氧化可降解水内有机污染物质,尤其是难可降解有机污染物质时有很明显的优势。

  钢铁产业是我国的重要基础产业,是实现工业化的支撑产业,是技术、资金、资源能源密集型产业。长期以来,钢铁工业为国家建设提供了重要的原材料保障,有力支撑了相关产业发展,推动了我国工业化、现代化进程。我国是钢铁生产大国,粗钢产量连续15年居世界第一,已建成全球产业链最完整的钢铁工业体系,有效支撑了下游用钢行业和国民经济的平稳较快发展。

  现代钢铁工业的生产过程包括采选、烧结、炼铁、炼钢(连铸)、轧钢等生产工艺。钢铁工业废水主要来源于生产工艺过程用水、设备与产品冷却水、烟气洗涤和场地冲洗等,但70%的废水还是源于冷却用水。间接冷却水在使用过程中仅受热污染,经冷却后即可回用;直接冷却水因与产品物料等直接接触,含有污染物质,需经处理后方可回用或串级使用。钢铁工业废水的水质,因生产工艺和生产方式不同而有很大差异。有的即使釆用同一种工艺,水质也有很大变化。特别是我国的钢铁工业是在老底子上发展起来的,老企业的落后工艺和设备致使污染严重,水的循环利用率很低,而近年来发展和建设的现代钢铁企业,水的循环利用率在90%以上,有的企业甚至做到废水“零排放”,两者相差悬殊,极不平衡。

  钢铁工业作为废水排放大户,其废水排放量约占工业废水排放总量的11.3%。废水中主要含有酸、碱、酚、氧化物、石油类及重金属等有害物质,这些废水如果不达标外排,造成的危害很大,因此必须进行治理。治理的原则是:首先压缩用水量,积极研究采用不排污或少排污的工艺;同时要重复利用,实施清浊分流,一水多用,提高循环率并尽量回收有用物质和余热。钢铁工业把生产过程排出的废水及其污染物作为有用资源加以回收利用,并实行高度循环或闭路循环(包括水和污染物的循环),其实质是模拟自然生态的无废料生产过程,是最优化过程。因此,高度循环和闭路循环用水技术,必须成为控制钢铁企业水污染的最佳技术。

  钢铁厂废水主要包括:采矿、烧结、炼铁、炼钢(连铸)、轧钢等工艺产生的废水,还有一些来自辅助工艺的废水,像焦化和自备电厂等。所以,钢铁厂废水处理实际上就包括了矿山废水处理、烧结废水处理、炼铁废水处理、炼钢废水处理、轧钢废水处理、焦化废水处理等。

  釆矿活动中产生各种污染物质,污染大气、水体及土壤。在诸多的矿山环境问题中,酸性废水的矿山环境污染和破坏较为严重,所以小旭会着重介绍酸性矿 山废水的处理。

  矿山废水来自于矿井天然溶滤水、矿渣渗滤液,以及开采点、选矿厂、尾矿坝、堆渣场和生活区等地排出的废水,污染物主要为砷、锑,同时含有铅、镉、铬、硒、锰等多种重金属元素,还包含一定的油类物质,成分比例与矿山地处资源有较大关系;且矿山开采、加工过程中不仅会产生废水,还会导致大量的动植物死亡,这使得矿山废水中有可能存在大量的有机污染物和细菌污染物。

  硫化矿床在氧气和水的作用下,其中的硫、铁等元素会生成硫酸和金属硫酸盐,溶解于水而成为矿山酸性废水。硫化矿山酸性废水的水量与水质和矿床的形成及埋藏条件、矿物的组成、矿山开采方法、水文地 质和气象条件等因素有关。矿山酸性废水是呈硫酸型的废水,一般pH值为1.0〜6.0,同时废水中多含有铜、锌、铁、锰等金属离子。

  矿山废水的特点是水量、水质变化大,废水呈酸性,并且含有大量金属离子,如果不处理就直接排放,会造成严重的污染。酸性废水对矿山企业的水泵、配件、管材、坑道设备产生强烈的腐蚀作用,影响矿山企业的正常生产;酸性废水排入河流、湖泊等水体后,使水体的pH值发生变化,抑制或阻止了细菌及微生物的生长,妨碍水体的自净,危害鱼类和其他水生植物,下渗的酸性废水对周边地下水也会造成污染;酸性废水进入农田,会破坏土壤结构,使农作物产量减少,残留的金属离子不能被微生物降解,若富集于农作物体内,可通过食物链进入人体危害人体健康。

  矿山废水产生过程中必然有着大量的漂浮物、大颗粒物甚至可能覆盖大面积的油膜,这些物质的存在不仅会影响后续废水处理技术作用效果,还会对废水处理设施和设备造成堵塞、破坏, 因此矿山废水必须首先进行预处理,通过过滤、浮流、辐流、絮凝等方式使矿山废水得到预处理后方可进行后续处理。

  矿山废水通常存在pH值的波动,且由于大量酸性污染物、重金属污染物、有机污染物的存在,矿山废水呈酸性的比例较大,且酸碱度对后续部分化学和生物处理技术有一定影响,通常情况下需要进行酸碱中和处理,使矿山废水保持在中性状态,让后续废水处理效果更佳。通常情况下,酸性矿山废水可以用NaOH和CaOH混合的石灰剂进行中和,碱性矿山废水可以用盐酸或硫酸进行处理,但并不建议使用矿物质酸进行碱性废水处理,因为这会使废水中产生氯化钠或硫酸盐,这些物质无法被自然水体容纳,还会影响后续处理设备。

  硫化法是利用Na2S、NaHS、H2S等硫化剂使废水中的重金属离子生成难溶物质,进而可以通过絮凝和过滤使重金属离子与水分离的一种处理方法,硫化法成本较高,且生成的难溶物质需要进一步处理才能释放,因此建议使用硫化法对难以处理达标的重金属离子进行处理。

  硫化法具有区别于其他重金属处理方法的优点是,重金属硫化物生成后,矿山废水的pH值在7〜9之间,硫化法处理后的废水不用再进行中和,可以代替酸碱中和处理环节。

  重金属处理剂使用后可以使重金属离子形成晶粒,通过絮凝或过滤后实现对废水的净化。重金属处理剂的使用,能够一-次性脱除掉矿山废水中的多种重金属离子,且这种处理剂的操作简单、方便,对需处理水质的适应性较强,没有太多限制,处理剂与重金属离子产生的晶粒极易脱水,使得此种处理方法的后续处理比较容易。

  氧化还原法是一种通过氧化还原反应使重金属离子更易沉淀的废水处理方法。例如,日本矿业公司发明的铁粉氧化还原法,是利用铁的还原性,去除含铬废水的Cr(VI),进而使得重金属离子以金属形式析出,不仅有利于废水的净化处理,还有利于重金属回收,有效提高了废水处理的经济效益。

  人工湿地是一种生物处理技术,在废水处理过程中充分利用基质、水生植物、微生物之间共同作用,通过湿地特有的过滤、沉淀、吸附、分解等系列作用来实现对矿山废水中有机污染物的高效降解,使矿山废水实现净化。由于人工湿地对重金属处理效果有限,且占地面积较大、处理效率较低,比较适用于大面积矿山废水的末端治理,也比较适合矿山挖掘、破坏后的水土修复和养护,属于矿山可持续发展的一大研究方向。

  生物膜技术是一种特殊的半透膜渗透的净化技术,由生物附着于生物转盘等设备之上,形成稳定、半透性生物膜,生物膜将矿山废水与净化后的水分隔开,以分子运动压力为驱动力,使废水缓慢流经生物膜,生物膜对其中的污染物进行截留、分离,一方面使废水得到净化,另一方面使重金属得到回收、生物膜得到稳定增长,是一种高效、节能、设备简单的废水净化技术。生物膜技术运用的问题在于设备价格昂贵,保养和运维费用较高,利用普及率较低;工作效率受外界影响较大,并不适合所有的矿山废水处理。

  矿山废水是矿山开采、加工过程中最主要的污染方式,开矿企业要加强对矿开采、加工过程中产生的废水的处理投入力度,采用更先进、更有效率、更环保节能的设备和工艺;根据矿山废水的成分、性质进行处理技术的搭配和工艺流程的设置,将矿山废水处理效果放在首位,将处理后中水回用放在其次,将重金属回收放在最后,最大程度提高矿山废水的处理效率。

  以上便是小旭总结的关于钢铁工业废水中矿山废水处理的有关内容,因篇幅关系,小旭还是会像之前一样做一个关于钢铁工业废水处理的系列内容,快快关注我吧,我们一起来学习!

推荐资讯